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Based on the environment-induced semigroup approach to the quantum measurement
process, we show that a certain class of these semigroups, referred to as contractive
uniformly k-Lipschitzian semigroups, exhibit a fixed point property. With regard to the
quantum measurement problem, semigroups of this kind ensure decoherence and the
selection of a single state from the family of pointer states. In fact, the common fixed
point is the selected state.
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1. INTRODUCTION

A theory of quantum measurement aims to explain the emergence of certain
objective results out of an originally given physical structure that consists of three
entities: a quantum physical system that is object to a measurement (the system,
in short), the physical environment of this system (the environment), and a hu-
man subject. The system itself is any part of nature where the laws of quantum
mechanics may reasonably be applied to, while the environment is the physical
complement of the system consisting of the measurement apparatus as well as of
all physical structures that exert some nonneglegible influence to the system. And
finally, the human subject being a conscious witness to the experimental outcome
of the measurement and treating this outcome as an objective document. It turns
out that under suitable conditions a measurement result may properly be repre-
sented as a unique classical quantity. Now this situation poses a problem, because
before measurement this quantity did not appear to play a special or an outstanding
role within the quantum physical description of the system nor did this quantity
have a special meaning in the physical description of the system’s environment
including the human observer. More precisely, even though quantum theory per-
mits a variety of different experimental outcomes (allowing also for nonclassical
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results, i.e., quantum superpositions), a measurement of a quantum system is often
characterized by a single outcome that corresponds to a classical state. Therefore
a theory of quantum measurement must be able to explain at least two physical
processes:

1. The effective elimination of all quantum superpositions, i.e., states of the
kind “Schrödinger’s cat.”

2. The selection of a single state out of the set of all remaining states.

Several theoretical attempts have been made to accomplish these objectives,
i.e., to explain the apparent collapse of the wave function. In fact, one particular
method—referred to as decoherence—proved to be successful in explaining the
absence of certain quantum states in measurement results. With decoherence it
has been shown that the interaction between the measured quantum system and its
environment—in particular the measurement apparatus—eliminates exactly those
quantum superpositions that according to classical physics represent contradictory
facts, e.g., a radioactive nucleus being in a state after and before its decay at the
same time. Thus decoherence is able to explain the first of the two porcessess stated
above. However, with regard to the second point a convincing answer within the
decoherence framework has not been given yet. For example, recent arguments
as given by Adler (2001), shed doubts on the ability of the decoherence approach
to select a single quasi-classical outcome of a quantum measurement. These ar-
guments seem to invalidate an opinion that according to decoherence can indeed
accomplish the firstand the second objective—as has been put forward recently
by several authors (see the references in Adler, 2001).

The aim of this text is to present a plausible model of decoherence that
can indeed accomplish both objectives. To do so, we follow the seminal works of
Blanchard and Olkiewicz ( Blanchard and Olkiewicz, 2000; Olkiewicz, 2000), and
approach the quantum measurement problem by treating environment (essentially,
the measurement apparatus) as a classical system described by a commutative al-
gebra of functions. In this approach, the evolution equation of the classical part
is modified by the expectation value of some quantum observable of the quantum
system while, at the same time, the Schr¨odinger unitary dynamics for the latter is
replaced by aenvironment-induced semigroupT of positive maps. (Henceforth,
we will frequently use the abbrevation EIS.) This semigroup is generated by a
Markovian master equation. As a consequence, the evolution of the quantum sys-
tem becomes dissipative and (Markovian) stochastic through the interaction with
its environment. This method represents decoherence as a process of continu-
ous measurement-like intercation between the system and its environment, and in
which the environment-induced semigroup naturally leads to a decomposition of
the space of observables: in one subspace the semigroup acts in a reversible unitary
way (referred to as the isometric subspace), and the second in which the semigroup
sweeps out the rest of the statistical states (referred to as the sweeping subspace).
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The isometric part is used to define sets ofclassical states. If they turn out to
be nonempty, Blanchard and Olkiewicz conclude that these states correspond to
points in a classical phase space.

With the environment-induced semigroup approach, we look at a system’s
transition in time from an initial phase where the system is described completely
by means of unitary Schr¨odinger dynamics (the closed phase), to a secondary phase
where the measurement-like interaction between the system and its environment
is described by means of the EIS (the open phase). Our main task is to demonstrate
that under some general conditions the dynamics in the open phase is characterized
by an attractive fixed point of the EIS in the quantum state space, and that this
point corresponds to a point in classical phase space.

2. THE FIXED POINT

2.1. “Classical” States

Environment-induced semigroups form a subset of the so-called dynamical
semigroups, i.e., strongly continuous semigroups of completely positive trace pre-
serving and contractive (in the trace norm‖ · ‖1) operators acting on the space
of trace class operatorsC1. (This Banach space is often referred to as the von
Neumann–Schatten class.) In addition, EIS are also contractive in the operator
norm‖ · ‖∞; this last property ensures that for an evolving statistical operatorρ

the statistical entropyS(ρ) = −trρ logρ and the linear entropy (often referred
to as the purity)Sl (ρ) = 1− trρ2 never decrease (Olkiewicz, 2000). Also, any
environment-induced semigroup,T = {Tt : t ≥ 0}, determines two linear, closed
andT -invariant subspacesC i

1 andCs
1 in the Banach space of all trace class operators

C1. The subspaceC i
1 is called the isometric part andCs

1 the sweeping part. These
spaces have the following properties (Olkiewicz, 1999):

(a) C i
1 andCs

1 are∗-invariant;
(b) For alle1 ∈ C i

1, e2 ∈ Cs
1 it is tr[e1e2] = 0;

(c) C1 = C i
1⊕ Cs

2;
(d) Tt |C i

1
is an invertible isometry given by a unitary group, i.e.,Tt |C i

1
e1 =

Utei U ∗t for anye1 ∈ C i
1;

(e) weak∗ − limt→∞ Tt |Cs
1
e2 = 0 in the weak∗ topology for anye2 ∈ Cs

1.

It can be shown that any one-dimensional projectione∈ C i
1 remains a pro-

jection during the temporal evolution, and soSl (Tte) = 0, Tt ∈ T , for all t ≥ 0.
(In other words, the temporal evolution in the isometric part is fully determined by
Schrödinger dynamics.) This property may be used to define the setS0 of “robust
states.”

S0 = S ∩ C i
1, (1)
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whereS is the set of all states. By a state we always mean a pure state; hence
S consists of one-dimensional projections (determined up to a complex phase
factor) in a Hilbert spaceH. An arbitrary state fromS0 will remain robust, i.e.,
will still be an element ofS0 and thus will stay pure during time evolution. In
other words, robust states evolve unitarily in time. Thus the set of robst states is
likely to contain “classical” states, because unitary evolution guarantees perfect
predictability—surely a desired feature of any state attributed as being “classical.”
However, the isometric subspace may contain states that do not have a classical
counterpart. Since the quantum mechanical superposition of states may still be ap-
plied, a linear combination of, say, two robust states may result in another robust
element ofC i

1. This feature has no classical analogy, since classical (and determin-
istic) states do not combine into another classical state. Blanchard and Olkiewicz
use this observation to state the following definition.

Definition 2.1. A statee∈ S is called “classical” ife∈ S0 and if for any f ∈ S0,
f 6= e, S(e, f ) ∩ S0 = ∅, whereS(e, f ) denotes the set of all states being nontrivial
superpositions ofeand f . The collection of all “classical” states is denoted bySc.

It can be further shown, that although “classical” states remain pure under the
action of an arbitrary element,Tt , the environment-induced semigroup, any of their
nontrivial superpositions loses its purity, i.e., evolves into a mixture. Given thatSc

is nonempty, the following statement about its elements can be made (Blanchard
and Olkiewicz, 2000).

Theorem 2.1. If Sc 6= ∅, then it consists of a family, possibly finite, of pairwise
orthogonal states{e1, e2, . . .} such that Ttei = ei for all t ≥ 0 and any index i.

This theorem reveals two important features. First, since it isei · ej = δi j ei ,
it is evident that “classical” states form a so-called pointer basis, which means
that the corresponding reduced density matrix is diagonal in this particular
basis. Second, since it isTtei = ei for all i and t ≥ 0, it turns out that each
“classical” state is actually a common fixed point of the environment-induced
semigroupT .

It is clear that if before measurement the quantum system is in an eigenstate of
the measured observable, then this state coincides with a “classical” state. But what
happens when the quatum system is not in an eigenstate of the measured observ-
able? Will then “classical” states emerge anyway? In this context it is worthwhile
to note that Theorem 2.1 tells nothing about the actual existence of “classical”
states. Furthermore, and in the view of the statements made in the introduction,
a proper process that selects a single state out of the pointer basis of “classical”
states is still missing. Thus an answer to the question of how a unique and classical
measurement result is ever achieved has not been addressed yet.
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2.2. The Fixed Point

In this part we extend the methods presented in the previous section, such
that we will arrive at a situation that allows us to discuss the open questions stated
above.

Here, we presume that the environment-induced semigroup is contractive in
the sense that for everyf, g ∈ C1 with f 6= g the inequality

‖Tt f − Tt g‖1 < ‖ f − g‖1 (2)

holds for allt ≥ 0. Moreover, if f is positive with‖ f ‖1 = 1 then‖Tt f ‖1 = ‖ f ‖1.
First of all, we observe that the existence of a “classical” statee∈ Sc is equiv-

alent to the existence of a unique common fixed pointTte= e for all t ≥ 0. Since
Theorem 2.1 tells use∈ Sc⇒ Tte= e for all t ≥ 0, it is sufficient to show the op-
posite implication. Thus letebe a common fixed point of the environment-induced
semigroupT = {Tt : t ≥ 0} acting on the Banach spaceC1. SinceTt , t ≥ 0, is con-
tracting in the operator norm‖ · ‖1, there are no other fixed points. Furthermore,
we show thatemust be an element ofS0. It is clear thate∈ C i

1, because obviously
an element of the sweeping spaceCs

1 cannot be a fixed point ofTt . We then assume
thate∈ C i

1 while e 6∈ S0. But this assumption leads to a contradiction. This stems
from the fact that an elemente∈ C i

1\S0 is either not pure, or its trace norm‖ · ‖1
must not equal one. But on the other hand we know thatTt acts onC i

1 as an invertible
isometry given by a unitary group—c.f., property (d) in the previous paragraph,
and that the unitary evolution generated by such a group can never change a pure
state into a mixture or change the norm of the pure state. Moreover, let the setS0

be nonempty, and letf ∈ S0, then our assumption together with the prerequisite
thatTt is contractive in the‖ · ‖1 norm demand

lim
t→∞‖Tte− Tt f ‖1 = lim

t→∞‖e− Tt |C i
1

f ‖1 = 0. (3)

But sincee is a mixture or it is‖e‖1 6= 1, while f is a pure state, the unitary (and
continuous) evolution ofTt |C i

1
f cannot be brought in line with eq. (3). Thus we

have shown thate∈ S0. Finally, let againS(e, f ) denote the set of all states being
nontrivial superpositions ofe∈ S0 and f ∈ S0, e 6= f . Then, clearly,S(e, f ) ∩
S0 = 0/. So, we have proven the following proposition.

Proposition 2.1. There is at most one e∈ C1 such that the following equivalence
relation holds: e∈ Sc⇔ e is a unique common fixed point of the environment-
induced semigroupT .

Our next intention is to investigate the existence of a fixed point. We start
with preliminary definitions. LetG be a semitopological semigroup, i.e.,G is a
semigroup woth a Hausdorff topology such that for eacha ∈ G, the mappings
t → at andt → ta from G into itself are continuous. LetC be a nonempty subset
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of a Banach spaceX. Then the familiyT = {Tt : t ∈ G} of self-mappings ofX is
said to be aLipschitzian semigroupon X if the following properties are satisfied
(Tan and Xu, 1995):

1. Ttsx = Tt Tsx for all t , s ∈ G andx ∈ X;
2. for eachx ∈ C the mappingt → Tt x is continuous onG;
3. for eacht ∈ G there is a constantk(t) > 0 such that‖Tt x − Tt y‖ ≤

k(t)‖x − y‖ for all x, y ∈ X.

A Lipschitzian semigroupT is calleduniformly k-Lipschitzianif k(t) = k for
all t ∈ G and in particular,nonexpansiveif kt = 1 for all t ∈ G. It is evident
that any environment-induced semigroup becomes a nonexpansive uniformly
k-Lipschitzian semigroup if we identifyX as the Banach space of trace class
operatorsC1 equipped with the trace norm.‖ · ‖1, and G asR+. In fact, any
environment-induced semigroup is even contractive, i.e., it isk(t) < 1 for all t ≥ 0.

For anyx ∈ X, the orbit ofx underT starting atx is the set

O(x) = {x} ∪ {Tt x : t ∈ G},
and for anyx, y ∈ X we setO(x, y) = O(x) ∪ O(y). A subsetC ⊂ X is said to
be bounded if its diameter diam (C), defined as

diam(C) = sup{‖x − y‖ : x, y ∈ C},
is finite. Additionally, we say a semigroupT is near-commutative if, for any
t, s ∈ G, there exists au ∈ G such that it isTt Tsx = TsTux for all x ∈ X. With
these definitions the following theorem holds (c.f., Huang and Hong, 1999).

Theorem 2.2. Suppose thatT is a near-commutative semigroup of continuous
self-mappings on a Banach space X such that the two following conditions are
satisfied.

1. For any x∈ X, its orbit O(x) is bounded.
2. There exists an upper semicontinuous functionϕ : [0,∞] → [0,∞] such

thatϕ(0)= 0 andϕ(a) < a for any a > 0 with the property that, for any
Tt ∈ T , there exists n(Tt ) ∈ N such that ‖Tn

t x − Tn
t y‖ ≤ ϕ

(diam(O(x, y))) for all n ≥ n(Tt ) and x, y ∈ X.

ThenT has a unique common fixed point x∗ ∈ X and, moreover, for any Tt ∈ T
and any x∈ X it is

lim
n→∞‖T

n
t x − x∗‖ = 0. (4)

First we note that any EIS is near-commutative because it is commutative. We
presume again that for a given EIST the set of robst statesS0 is not empty; and
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we further assume that the environment-induced semigroup is uniformly contrac-
tive, which means thatk = sup{k(t) : t ≥ 0} < 1. With this assumption we may
construct an upper semicontinuous “gauge function”ϕ : [0,∞)→ [0,∞), viz.
ϕ(a) = ka for all a ≥ 0. (A function f : [0,∞)→ [0,∞) is said to be upper semi-
continuous at a pointx0, if for anyε > 0 there isδ > 0 such thatf (x)− f (x0) < ε

for all x ∈ [0,∞) with |x − x0| < δ. This function is called upper semicontinuous
if it is upper semicontinuous at all pointsx0 ∈ [0,∞).)

Next we verify the two conditions given in Theorem 2.2. Given anyf ∈ C1,
its orbit,O( f ), has to be bounded because forg ∈ S0 it is ‖Tt g‖1 = 1 for all t ≥ 0,
which means thatO(g) is bounded. At same time it must be‖Tt g− Tt f ‖1 < ‖g−
f ‖1 for all t ≥ 0; thus we have‖Tt f ‖1 ≤ 1+ ‖Tt g− Tt f ‖1 < 1+ ‖g− f ‖1 ≤
2+ ‖ f ‖1. Therefore, it is diam(O( f )) ≤ 2(2+ ‖ f ‖1) for any f ∈ C1. The second
condition is also fulfilled; as it is

‖Tn
t x − Tn

t y‖1 = ‖Tntx − Tnt y‖1 ≤ k‖x − y‖1
= ϕ(‖x − y‖1) ≤ ϕ(O(x, y)) (5)

for everyn ∈ N andt ≥ 0. Thus we obtain a fixed point result.

Proposition 2.2. Any environment-induced semigroupT = {Tt : t ≥ 0}, which
is uniformly k-Lipschitzian onC1 with k < 1, and which impliesS0 6= ∅, has a
unique common fixed point inC1, i.e., there is exactly one e∈ C1 such that Tte= e
for all t ≥ 0. Moreover, for an arbitrary f∈ C1 and any Tt ∈ T it is

lim
t→∞‖Tt f − e‖1 = 0. (6)

Given explicit existence, we may, by virtue of Proposition 2.1, imply

Corollary 2.3. e is “classical,” i.e., e∈ Sc.

We remark here that Proposition 2.2 does not establish a fixed point prop-
erty for the whole class of possible environment-induced semigroups; instead it
is valid only for a proper subclass whose members are uniformly contractivek-
Lipschitzian semigroups. Nevertheless, this proposition and the following corol-
lary tell us that there is indeed a unique “classical” state (among a family of pointer
states) such that it may be regarded as the unique and classical outcome of a con-
tinuous measurement process represented by an EIS acting on an open quantum
system. Furthermore, our result does not determine which state from the pointer
basis becomes a common fixed point of the EIS; thus it does not introduce a de-
terministic measurement process. Also, since all states converge towards the same
fixed point within the open phase, the ultimate (t →∞) outcome of the mea-
surement process is independent of the state of the quantum system prior to the
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measurement, i.e., the state in the closed phase. The fixed point property solely
depends on the set of the quantum system’s statistical operators—embedded in the
Banach spaceC1, and on its dynamical interaction with an environment-induced
semigroup. This interaction is encoded in the algebraic and analytical structure of
the isometric-sweeping space decomposition:C1 = C i

1⊕ Cs
1.

However, several open questions considering the prerequisites and the con-
sequences of our results remain. We name here a few without going into details.
First, one may ask for the conditions where it becomes permissable to represent a
continuous measurement as a Markovian master equation. A non-Markovian evo-
lution equation does not generate a continuous semigroup of completely positive
maps, i.e., in this case a semigroup composition lawTsTt = Tst is missing, and so
the results presented here do not apply. Second, it is worthwhile to explore nec-
essary conditions that imply a common fixed point property for a larger class of
EIS, i.e., for Lipschitzian semigroups wherek is not uniformly smaller than one.
Third, with regard to the structure of fixed point itself, one may ask under what
circumstances the fixed point becomes ergodic. And fourth, one may investigate
the interaction between a given EIS and local group transformations in the quan-
tum phase space. Transformations of this kind are associated with a Lie groupG
that represents the nonlocality of quantum states. Examples of realizations of this
group areG = U (1)× SU(2) for a spin-1/2 particle, the cyclic groupG = Zp

(p a prime) for a quantum harmonic oscillator, or the Heisenberg–Weyl group
G = HW(q, p) for a free particle. Since in general these groups do not act as
contractions on corresponding quantum state spaces, while instead an EIS always
acts as contraction, it would be interesting to study possible emerging phenomena
such as symmetry breaking and order parameters.
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